Η

GCSE (9-1)

Combined Science B (Twenty First Century Science)

J260/07: Physics (Higher Tier)

General Certificate of Secondary Education

Mark Scheme for June 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2019

J260/07

June 2019

Annotations available in RM Assessor

Annotation	Meaning
V	Correct response
×	Incorrect response
^	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
LI	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

PMT

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
1	alternative and acceptable answers for the same marking point
\checkmark	Separates marking points
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
—	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

J260/07

June 2019

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.

You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet **Instructions for Examiners**. If you are examining for the first time, please read carefully **Appendix 5 Introduction to Script Marking: Notes for New Examiners**.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

J260/07

The breakdown of Assessment Objectives for GCSE (9-1) in Combined Science B:

	Assessment Objective
AO1	Demonstrate knowledge and understanding of scientific ideas and scientific techniques and procedures.
AO1.1	Demonstrate knowledge and understanding of scientific ideas.
AO1.2	Demonstrate knowledge and understanding of scientific techniques and procedures.
AO2	Apply knowledge and understanding of scientific ideas and scientific enquiry, techniques and procedures.
AO2.1	Apply knowledge and understanding of scientific ideas.
AO2.2	Apply knowledge and understanding of scientific enquiry, techniques and procedures.
AO3	Analyse information and ideas to interpret and evaluate, make judgements and draw conclusions and develop and improve experimental procedures.
AO3.1	Analyse information and ideas to interpret and evaluate.
AO3.1a	Analyse information and ideas to interpret.
AO3.1b	Analyse information and ideas to evaluate.
AO3.2	Analyse information and ideas to make judgements and draw conclusions.
AO3.2a	Analyse information and ideas to make judgements.
AO3.2b	Analyse information and ideas to draw conclusions.
AO3.3	Analyse information and ideas to develop and improve experimental procedures.
AO3.3a	Analyse information and ideas to develop experimental procedures.
AO3.3b	Analyse information and ideas to improve experimental procedures.

J260/0	7
--------	---

Question		on	Answer	Marks	AO element	Guidance
1	(a)		transformers 🗸	1	1.1	ALLOW transformer
						IGNORE step up, step down
	(b)		increased	1	1.1	DO NOT ALLOW answers in incorrect order (must
			decreased			have both answers in this order)
			\checkmark			
	(c)	(i)	230 (V) ✓	1	1.1	ALLOW values in range 220-240 (V)
		(ii)	(The high voltage/p.d.) may cause a high current ✓ Which may overheat wires /cause fires OR may cause electric shock/stop heart ✓	2	1.1x2	ALLOW electrocution
			OR			
			(The high voltage/p.d.) is a.c. ✓ can affect muscles / so you can't let go OR may cause electric shock/stop heart√			ALLOW electrocution

Q	Question		Answer	Marks	AO element	Guidance
2	(a)		Safety (max. 2 from): Don't boil the liquid OR Suggestion of sensible max temperature. \checkmark Take care not to touch hot parts \checkmark Allow apparatus to cool before dismantling \checkmark	3	1.2 x 3	ALLOW goggles or other sensible safety precaution e.g. heat proof gloves IGNORE gloves unqualified, apron
			Measurements (max. 2 from): Measure initial and final temperature of liquid/oil/water ✓ Measure mass of liquid/oil/water ✓			IGNORE measure temperature IGNORE measure temperature difference
			Record energy on joulemeter ✓ Stir before taking temperature readings ✓			ALLOW measure energy used ALLOW measure time to heat and power of heater ALLOW measure time to heat, p.d. and current in heater.
						ALLOW one mark (in measurements) for idea of substitution of measurements in the specific heat capacity equation
	(b)		FIRST CHECK ANSWER ON ANSWER LINE If answer = 2.05 (kJ/kg °C) (1.94 + 2.23 + 1.98) / 3 ✓ = 2.05 (kJ/kg°C) ✓	2	1.2 x 2	ALLOW any answer that rounds to 2.05 ALLOW one mark for 1.96 if 2.23 is explicitly identified as an outlier
	(c)		(accurate value is) lower ✓ (Because) energy is required to heat up apparatus and/or surroundings ✓	3	3.1a 3.1b	ECF ORA
			Lag the container OR add a lid \checkmark		3.3b	ALLOW only improvements that reduce the energy transfer to apparatus/surroundings

June 2019	
-----------	--

G	uest	on	Answer	Marks	AO element	Guidance
3	*		 Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) Interprets the charts to describe trends in detail. AND Gives an explanation for the trends including a reference to renewables and coal. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Interprets the charts to describe a trend in detail. OR Gives an explanation for the trend in renewables and coal.	6	3.1a x 4 2.1 x 2	 AO3.1a Analyse information and ideas to interpret For example: Basic trend: coal use has fallen gas use not much changed /no clear trend /up and down nuclear not much changed /no clear trend /up and down renewables increased other and oil not much changed /no clear trend /up and down/unchanged overall quoting data e.g. coal from 36.5% to 22.0% More detail: coal use falling every year renewables increasing every year the increase in renewables is increasing every year using data for coal e.g. coal fell by (36.5-22.0 =) 14.5% using data for renewables
			States a basic trend shown in the charts and explain a trend by referring to either coal decreasing or renewables increasing. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1–2 marks) States a basic trend shown in the charts OR Explains a trend by referring to either coal decreasing or renewables increasing.			 AO2.1 Application of knowledge and understanding For example: Explains that: coal/gas result in CO₂ emissions which cause global warming coal fired power stations / mines are being closed coal fired stations produce SO₂ nuclear does not cause CO₂ emissions renewables increasingly used as more sustainable

PMT

J260/07

Mark scheme

Question		ion	Answer	Marks	AO element	Guidance
			There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.			 renewables increasingly used as no CO₂ emissions when generating lots of wind farms and offshore wind farms have been built lots of solar farms have been built.

PMT

June	2019	
------	------	--

Q	uesti	on	Answer	Marks	AO element	Guidance
4	(a)	(i)	An induced magnet becomes a magnet in a magnetic field. A permanent magnet keeps its magnetism when it is not in a magnetic field/has its own magnetic field always \checkmark	1	1.1	Both statements required for the mark ALLOW an induced magnet has temporary magnetism but a permanent always has its magnetism.
		(ii)	 they attract they repel ✓ 	1	1.1	Both required for the mark AW applies to both
		(iii)	Field is stronger near the poles ✓ Field direction is from north to south ✓	2	1.1x2	This can be in words (even if nothing on diagram) OR by field pattern showing lines closer together [or by labels e.g. 'field stronger here'] at poles and arrowheads on field lines (even if no words). ALLOW for poor drawing skills i.e. words take priority e.g. allow If field lines parallel and words say 'stronger at poles' e.g. allow if arrow heads contradict each other and words say N to S. DO NOT ALLOW if arrowheads contradict (even if words correct) IGNORE crossing field lines
	(b)		(The metal bar in the boat) is a permanent magnet \checkmark The Earth's magnetic field is in the direction left to right or right to left \checkmark OR (Magnet) lines up with Earth's magnetic field \checkmark	2	3.2bx2	ALLOW bar magnet for permanent magnet ALLOW (magnetic) north/south is to right/left
	(c)		(The core of the Earth) is a permanent magnet. ✓	1	1.1	ALLOW the Earth behaves as if it has a bar magnet (at the centre/core).ALLOW (the core) creates/has a magnetic field

June	2019	
------	------	--

C	luest	ion	Answer	Marks	AO element	Guidance
5	(a)		The number of waves/cycles/oscillations (made by the source) each second ✓	1	1.1	ALLOW vibration for oscillation
	(b)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 4.4 x 10 ⁻⁴ (m) award 4 marks	4		Answer in standard form = $4.4 \times 10^{\times}$ (m) where x is not -4 from incorrect conversion scores 3 marks.
			Substitution 1540 m/s = 3.5MHz × λ \checkmark		1.2	
			Conversion 3.5 MHz = 3.5×10^6 (Hz) \checkmark		1.2	
			Rearrangement λ = 1540 ÷ (3.5 × 10 ⁶) \checkmark		2.1x2	
			Answer in standard form = 4.4×10^{-4} (m) \checkmark			DO NOT ALLOW 0.00044 (m)
		(ii)	Centre of one reflection i.e.99 (µs) OR 44(µs) correctly identified \checkmark [99– 44] = 55 (µs) \checkmark	2	2.2x2	ALLOW for 44 (μs) value in range 42 to 46 (μs) ALLOW for 99(μs) value in range 97 to 101 (μs) ALLOW for 55 (μs) value in range 51 to 59(μs) Delay in correct range with no working scores 2 marks
		(iii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 0.042 (m) or 0.043 (m) award 5 marks	5		ALLOW other methods such as working out distance travelled by wave reflected at A and wave reflected at B and subtracting
			Recall speed = distance \div time \checkmark		1.2	ALLOW any subject of the equation
			Substitution 1540 m/s = distance ÷ 55 (µs) \checkmark		2.1	ECF time from 5bii [51(μs) gives 0.0393 (m);59(μs) gives 0.0454 (m)]
			Conversion 55 μ s = 55 × 10 ⁻⁶ (s) \checkmark		1.2	Answer from incorrect conversion can score max 4 marks
			Rearrangement and evaluation distance = $1540 \times 55 \times 10^{-6} = 0.0847(m) \checkmark$		2.1	ALLOW 0.085 (m)
			Recognition that distance travelled by reflected beam from B is = 2 x distance AB greater than the reflected beam from A so = 0.042 (m) \checkmark		2.1	ALLOW answers that round to 0.042 or 0.43(m) ALLOW an independent mark for recognition that the distance should be halved, i.e. award this mark if candidate has halved their distance or time but not both

June	2019
------	------

Question		ion	Answer	Marks	AO element	Guidance
6	(a)	(i)	Top line 237 \checkmark Bottom line 93 \checkmark	2	1.2 x 2	
		(ii)	For e: top 0 and bottom -1 ✓	3	1.1	Both required for this mark
			For Sm: top line 147 \checkmark For Sm: bottom line 62 \checkmark		1.2x2	
	(b)		Idea that Pm-147 emits β AND Am-241 emits $\alpha \checkmark$	3	2.1x3	DO NOT ALLOW Pm-147 without some attempt at valid explanation
			Idea that radiation from Am-241/alpha radiation will be completely absorbed/stopped \checkmark			ALLOW no alpha will get through Only award this mark if Pm-147 is the chosen isotope
			Idea that radiation from Pm-147/beta radiation will be only partially absorbed/stopped (depending on thickness) \checkmark			ALLOW some beta will get through.
	(c)		To avoid irradiation of people AW \checkmark	2	2.1x2	IGNORE avoid harming/damaging/killing people
			Because it is ionising radiation OR damages cells/tissues/DNA OR can cause cell mutation \checkmark			IGNORE causes cancer / causes radiation poisoning

Q	uesti	ion	Answer	Marks	AO element	Guidance
7	(a)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 70 (m) award 4 marks	4		
			Recall work done = force × distance \checkmark		1.2	ALLOW any subject of the equation
			Substitution 4.6 x 10^7 = 2.3 x 10^5 × s \checkmark		2.1x3	
			Rearrangement and evaluation $s = 4.6 \times 10^7 \div 2.3 \times 10^5 = 200 \text{ (m)} \checkmark$			
			<i>d</i> = 200 - 130 = 70 (m) ✓			ALLOW an independent mark for recognition that the distance d is their value of s minus 130, as long as s>130 and d correctly calculated
		(ii)	(Energy transferred) from kinetic (energy store of train) \checkmark	2	1.1 x 2	
			to thermal energy (store) of brakes/train/surroundings \checkmark			ALLOW of air/tunnel walls IGNORE sound
	(b)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 360 000 (N) award 5 marks	5		ALLOW answers with more sf that round correctly to this value.ALLOW answers in standard form or using prefixes
			Calculation KE = ($\frac{1}{2} \times 280\ 000\ x\ 12^2$) = 2.016 × 10 ⁷ (J) \checkmark		2.1	ALLOW if KE = 2.016×10^7 (J) seen anywhere in
			KE = work done by force \checkmark		1.1	
			Recall and rearrange work done = force × distance \checkmark		1.2	ALL OW: $1/x 280,000 \times 12^2$ for 2,016 x 107
			force = $2.016 \times 10^7 \div 56 \checkmark$		2.1	ECF wrong value of KE
			force = 360 000 (N) ✓		2.1	
	(C)		The KE of the trains is transferred by heating (and the	2	1.1	

June 2	2019
--------	------

Question	Answer	Marks	AO element	Guidance
	 thermal store of the surroundings is increased). ✓ AND any one from: idea that: There are now more trains ✓ More people/passengers (transfer energy by heating surroundings) ✓ Not all of energy from motors/engines is transferred to KE of train as they are not 100% efficient. ✓ 		2.1	ALLOW (tunnels) used more frequently/often

June	2019	
------	------	--

Q	uesti	ion	Answer	Marks	AO element	Guidance
8	(a)		It changes speed as it enters and leaves the prism ✓ OR It slows down as it enters (the glass/prism) / It speeds up as it leaves (the glass/prism) ✓ it changes direction/bends. ✓	2	1.1 x 2	ALLOW angle changes on entering/leaving
	(b)		Red light has the lowest frequency ✓ Violet light is refracted most moving from air to glass ✓	2	1.1 2.1	

Q	Question 9 (a)		Answer	Marks	AO element	Guidance
9	(a)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 31 (m/s) award 3 marks	3		ALLOW 31 m/s and all answers that round correctly to 31 m/s
			110 x 1000 ÷(60 x 60) √		1.2	ALLOW 110000 ÷ 3600
			= 30.5(5) (m/s) ✓		2.1	
			= 31 (m/s) ✓		1.2	
	(b)	(i)	A scalar has magnitude only. A vector has magnitude and direction. \checkmark	1	1.1	Must have both to be awarded the mark ALLOW size for magnitude IGNORE examples
		(ii)	\checkmark acceleration \checkmark displacement \checkmark \checkmark distance \checkmark \checkmark speed \checkmark velocity \checkmark	1	1.1	All must be correct to award the mark
	(c)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 1.5 (m/s ²) award 3 marks Attempt to calculate gradient of negative slope ✓ Uses a correct pair of values e.g. (-) (18-0)/(47-35) ✓	3	2.2x3	IGNORE sign ALLOW 18/(47-35) and other correct pairs where zero omitted.
			Deceleration = 1.5 (m/s ²) \checkmark			ALLOW any correct fraction eg 18/12 IGNORE negative sign of gradient ALLOW correctly calculated answers that round to 1.5 (m/s ²)

June	2019
------	------

Q	uesti	on	Answer	Marks	AO element	Guidance
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 108 (m) or 110 (m) award 3 marks	3		ALLOW counting squares method ALLOW for counting squares, answers that round to 110 (m) IGNORE distance = speed x time
			Identifies stopping distance = area under negative slope line \checkmark		1.2	
			Recall area of triangle = $\frac{1}{2}$ base x height \checkmark		2.2x2	ALLOW ¹ / ₂ x 12 x 18 ECF height and/or base from 9ci
			Stopping distance = 108 (m) \checkmark			ALLOW 110 (m) to 2sf
	(d)	(i)	Straight lines drawn on graph:	3	2.2 x 3	With a ruler and ± 1/2 small square
			(0, 0) to (1-24, 26) ✓			Must start from (0, 0)
			(1-24, 26) to (21-44, 20) ✓			ECF first point (<i>x</i> , <i>y</i>), 2^{nd} point (<i>x</i> + 20, <i>y</i> - 6)
			(21-44, 20) to (45, 0) ✓			ECF 2 nd point to (45, 0)
		(ii)	(second gazelle because) The area (under the curve) is larger \checkmark	1	3.2a	

June	2019	
------	------	--

Question	Answer	Marks	AO element	Guidance
10	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 1.4 (A) award 2 marks Substitution into force = magnetic flux density × current × length of conductor 0.63 = 1.8 × / × 0.25 ✓ Current = 1.4 (A) ✓	2	2.1x2	ALLOW calculation of 1.4 A and a final answer slightly more (to allow for lifting the rod)

Question		on	Answer	Marks	AO element	Guidance
11	(a)			3	1.1 x 3	ALLOW atoms, molecules for 'particles' throughout
			particles gain kinetic energy/move faster (when heated/ as temperature rises) \checkmark			DO NOT ALLOW vibrate faster/more for 'move faster'
			particles move further apart (when heated/change state) \checkmark			
			particles escape from liquid (as they enter gaseous state) \checkmark			
	(b)		Idea that (for a fixed mass) latent heat is greater than specific heat. ✓	3	2.1	
			energy from water is transferred to the solid PCM by heating OR energy from liquid PCM is transferred to water/night air by heating ✓		3.1ax2	
			energy from water melts the solid PCM by heating OR the liquid PCM freezes by heating the night air/water			
	(c)	(i)	(A because) Any two from: Melting point of A (temperature of 16°C) is lower than required/22°C so it will have a greater cooling effect √	2	3.2ax2	DO NOT ALLOW just A without justification
			Melting point of B (temperature of 28°C) is higher than required so it will not melt below that temperature \checkmark			
			The time to melt A is greater so more energy/heating is required to melt it or A has higher specific latent heat √			
			The gradient of the slopes for A is lower so more energy/heating is required to increase its temperature or it has higher specific heat capacity) ORA \checkmark			
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE	5		

June	2019
------	------

Question		on	Answer	Marks	AO element	Guidance
			If answer = 150 000 (J/kg) award 5 marks			
			Deduce time required from graph = [160-35] OR 125 (s) \checkmark		2.2	
			Recall and rearrange to energy = power x time \checkmark		1.2	
			<i>E</i> = 120 × 125 OR 15000 (J) ✓		2.1x3	
			Select and apply energy = mass x specific latent heat $E = 100 \times 10^{-3} \times SLH \checkmark$			ALLOW ECF from their calculated value of <i>E</i> using energy = power x time
			SLH = 15000 ÷ [100 x 10⁻³] = 150 000 (J/kg) ✓			150 (J/kg) scores 4 marks

PMT

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge CB2 8EA

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

© OCR 2019

Head office

Telephone: 01223 552552 Facsimile: 01223 552553