GCSE (9-1)

Combined Science B (Twenty First Century Science)

J260/07: Physics (Higher Tier)

General Certificate of Secondary Education

Mark Scheme for June 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

Annotations available in RM Assessor

Annotation	Meaning
S	Correct response
A	Incorrect response
BOD	Omission mark
CON	Benefit of doubt given
RE	Contradiction
SF	Rounding error
ECF	Error in number of significant figures
L1	Error carried forward
L2	Level 1
L3	Level 2
NBOD	Level 3
SEEN	Benefit of doubt not given
I	Noted but no credit given

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
	alternative and acceptable answers for the same marking point
DO NOT ALLOW	Separates marking points
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

The breakdown of Assessment Objectives for GCSE (9-1) in Combined Science B:

	Assessment Objective
AO1	Demonstrate knowledge and understanding of scientific ideas and scientific techniques and procedures.
AO1.1	Demonstrate knowledge and understanding of scientific ideas.
AO1.2	Demonstrate knowledge and understanding of scientific techniques and procedures.
AO2	Apply knowledge and understanding of scientific ideas and scientific enquiry, techniques and procedures.
AO2.1	Apply knowledge and understanding of scientific ideas.
AO2.2	Apply knowledge and understanding of scientific enquiry, techniques and procedures.
AO3	Analyse information and ideas to interpret and evaluate, make judgements and draw conclusions and develop and improve experimental procedures. AO3.1 Analyse information and ideas to interpret and evaluate. AO3.1a AO3.1b Analyse information and ideas to interpret. AO3.2 Analyse information and ideas to evaluate. AO3.2a Analyse information and ideas to make judgements. AO3.2b Analyse information and ideas to draw conclusions.
AO3.3	Analyse information and ideas to develop and improve experimental procedures.
AO3.3b	Analyse information and ideas to develop experimental procedures.

Question		Answer	Marks	AO element	Guidance	
$\mathbf{1}$	(a)	transformers \checkmark	$\mathbf{1}$	$\mathbf{1 . 1}$	ALLOW transformer IGNORE step up, step down	
	(b)	increased decreased \checkmark	$\mathbf{1}$	$\mathbf{1 . 1}$	DO NOT ALLOW answers in incorrect order (must have both answers in this order)	
	(c)	(i)	230 (V) \checkmark (ii)	(The high voltage/p.d.) may cause a high current \checkmark Which may overheat wires /cause fires OR may cause electric shock/stop heart \checkmark OR (The high voltage/p.d.) is a.c. \checkmark can affect muscles / so you can't let go OR may cause electric shock/stop heart \checkmark	$\mathbf{2}$	$\mathbf{1 . 1 \times 2}$

Question		Answer	Marks	AO element	Guidance
2	(a)	Safety (max. 2 from): Don't boil the liquid OR Suggestion of sensible max temperature. Take care not to touch hot parts Allow apparatus to cool before dismantling Measurements (max. 2 from): Measure initial and final temperature of liquid/oi/water \checkmark Measure mass of liquid/oi/water Record energy on joulemeter \checkmark Stir before taking temperature readings	3	1.2×3	ALLOW goggles or other sensible safety precaution e.g. heat proof gloves IGNORE gloves unqualified, apron IGNORE measure temperature IGNORE measure temperature difference ALLOW measure energy used ALLOW measure time to heat and power of heater ALLOW measure time to heat, p.d. and current in heater. ALLOW one mark (in measurements) for idea of substitution of measurements in the specific heat capacity equation
	(b)	FIRST CHECK ANSWER ON ANSWER LINE If answer $=2.05\left(\mathbf{k J} / \mathrm{kg}^{\circ} \mathrm{C}\right)$ $\begin{aligned} & (1.94+2.23+1.98) / 3 \\ & =2.05\left(\mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{C}\right) \checkmark \end{aligned}$	2	1.2×2	ALLOW any answer that rounds to 2.05 ALLOW one mark for 1.96 if 2.23 is explicitly identified as an outlier
	(c)	(accurate value is) lower (Because) energy is required to heat up apparatus and/or surroundings Lag the container OR add a lid	3	$\begin{aligned} & \hline 3.1 \mathrm{a} \\ & 3.1 \mathrm{~b} \\ & 3.3 \mathrm{~b} \end{aligned}$	ECF ORA ALLOW only improvements that reduce the energy transfer to apparatus/surroundings

	Ques	Answer	Marks	AO element	Guidance
3	*	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Interprets the charts to describe trends in detail. AND Gives an explanation for the trends including a reference to renewables and coal. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Interprets the charts to describe a trend in detail. OR Gives an explanation for the trend in renewables and coal. OR States a basic trend shown in the charts and explain a trend by referring to either coal decreasing or renewables increasing. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) States a basic trend shown in the charts OR Explains a trend by referring to either coal decreasing or renewables increasing.	6	$\begin{array}{\|c\|} \hline 3.1 \mathrm{a} \mathrm{x} 4 \\ 2.1 \times 2 \end{array}$	A03.1a Analyse information and ideas to interpret For example: Basic trend: - coal use has fallen - gas use not much changed /no clear trend /up and down - nuclear not much changed /no clear trend /up and down - renewables increased - other and oil not much changed /no clear trend /up and down/unchanged overall - quoting data e.g. coal from 36.5% to 22.0% More detail: - coal use falling every year - renewables increasing every year - the increase in renewables is increasing every year - using data for coal e.g. coal fell by (36.5-22.0 $=$) 14.5\% - using data for renewables AO2.1 Application of knowledge and understanding For example: Explains that: - coal/gas result in CO_{2} emissions - which cause global warming - coal fired power stations / mines are being closed - coal fired stations produce SO_{2} - nuclear does not cause CO_{2} emissions - renewables increasingly used as more sustainable

Question		Answer	Marks	AO element	Guidance
	There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. $\mathbf{0}$ marks No response or no response worthy of credit.		renewables increasingly used as no CO_{2} emissions when generating lots of wind farms and offshore wind farms have been built lots of solar farms have been built.		

Question		Answer	Marks	$\underset{\text { AO }}{\text { AOment }}$	Guidance
4 (a)	(i)	An induced magnet becomes a magnet in a magnetic field. A permanent magnet keeps its magnetism when it is not in a magnetic field/has its own magnetic field always	1	1.1	Both statements required for the mark ALLOW an induced magnet has temporary magnetism but a permanent always has its magnetism.
	(ii)	1. they attract 2. they repel	1	1.1	Both required for the mark AW applies to both
	(iii)	Field is stronger near the poles Field direction is from north to south	2	1.1x2	This can be in words (even if nothing on diagram) OR by field pattern showing lines closer together [or by labels e.g. 'field stronger here'] at poles and arrowheads on field lines (even if no words). ALLOW for poor drawing skills i.e. words take priority e.g. allow If field lines parallel and words say 'stronger at poles' e.g. allow if arrow heads contradict each other and words say N to S . DO NOT ALLOW if arrowheads contradict (even if words correct) IGNORE crossing field lines
(b)		(The metal bar in the boat) is a permanent magnet The Earth's magnetic field is in the direction left to right or right to left OR (Magnet) lines up with Earth's magnetic field	2	3.2bx2	ALLOW bar magnet for permanent magnet ALLOW (magnetic) north/south is to right/left
(c)		(The core of the Earth) is a permanent magnet. \checkmark	1	1.1	ALLOW the Earth behaves as if it has a bar magnet (at the centre/core). ALLOW (the core) creates/has a magnetic field

Question			Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
5	(a)		The number of waves/cycles/oscillations (made by the source) each second	1	1.1	ALLOW vibration for oscillation
	(b)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=4.4 \times 10^{-4}(\mathrm{~m})$ award 4 marks Substitution $1540 \mathrm{~m} / \mathrm{s}=3.5 \mathrm{MHz} \times \lambda \checkmark$ Conversion $3.5 \mathrm{MHz}=3.5 \times 10^{6}(\mathrm{~Hz}) \checkmark$ Rearrangement $\lambda=1540 \div\left(3.5 \times 10^{6}\right)$ Answer in standard form $=4.4 \times 10^{-4}(\mathrm{~m}) \checkmark$	4	$\begin{gathered} 1.2 \\ 1.2 \\ 2.1 \times 2 \end{gathered}$	Answer in standard form $=4.4 \times 10^{\times}(\mathrm{m})$ where x is not -4 from incorrect conversion scores 3 marks. DO NOT ALLOW 0.00044 (m)
		(ii)	Centre of one reflection i.e. 99 ($\mu \mathrm{s}$) OR 44($\mu \mathrm{s}$) correctly identified \checkmark $[99-44]=55(\mu \mathrm{~s})$	2	2.2x2	ALLOW for $44(\mu \mathrm{~s})$ value in range 42 to 46 ($\mu \mathrm{s}$) ALLOW for $99(\mu \mathrm{~s})$ value in range 97 to $101(\mu \mathrm{~s})$ ALLOW for 55 ($\mu \mathrm{s}$) value in range 51 to $59(\mu \mathrm{~s})$ Delay in correct range with no working scores 2 marks
		(iii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=0.042(\mathrm{~m})$ or $0.043(\mathrm{~m})$ award 5 marks Recall speed $=$ distance \div time \checkmark Substitution $1540 \mathrm{~m} / \mathrm{s}=$ distance $\div 55(\mu \mathrm{~s}) \checkmark$ Conversion $55 \mu \mathrm{~s}=55 \times 10^{-6}(\mathrm{~s}) \checkmark$ Rearrangement and evaluation distance $=1540 \times 55 \times 10^{-6}=0.0847(\mathrm{~m}) \checkmark$ Recognition that distance travelled by reflected beam from \mathbf{B} is $=2 x$ distance $\mathbf{A B}$ greater than the reflected beam from A so $=0.042(\mathrm{~m}) \checkmark$	5	1.2 2.1 1.2 2.1 2.1	ALLOW other methods such as working out distance travelled by wave reflected at \mathbf{A} and wave reflected at B and subtracting ALLOW any subject of the equation ECF time from 5bii [51($\mu \mathrm{s}$) gives $0.0393(\mathrm{~m}) ; 59(\mu \mathrm{~s})$ gives 0.0454 (m)] Answer from incorrect conversion can score max 4 marks ALLOW 0.085 (m) ALLOW answers that round to 0.042 or $0.43(\mathrm{~m})$ ALLOW an independent mark for recognition that the distance should be halved, i.e. award this mark if candidate has halved their distance or time but not both

Question			Answer	Marks	AO element	Guidance
6	(a)	(i)	Top line 237 Bottom line 93	2	1.2×2	
		(ii)	For e: top 0 and bottom -1 For Sm: top line $147 \checkmark$ For Sm: bottom line 62	3	$\begin{gathered} 1.1 \\ 1.2 \times 2 \end{gathered}$	Both required for this mark
	(b)		Idea that Pm-147 emits β AND Am-241 emits $\alpha \checkmark$ Idea that radiation from Am-241/alpha radiation will be completely absorbed/stopped Idea that radiation from $\mathrm{Pm}-147 /$ beta radiation will be only partially absorbed/stopped (depending on thickness)	3	2.1x3	DO NOT ALLOW Pm-147 without some attempt at valid explanation ALLOW no alpha will get through Only award this mark if Pm-147 is the chosen isotope ALLOW some beta will get through.
	(c)		To avoid irradiation of people AW \checkmark Because it is ionising radiation OR damages cells/tissues/DNA OR can cause cell mutation	2	2.1x2	IGNORE avoid harming/damaging/killing people IGNORE causes cancer / causes radiation poisoning

Question			Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
7	(a)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $\mathbf{7 0}$ (m) award 4 marks Recall work done $=$ force \times distance Substitution $4.6 \times 10^{7}=2.3 \times 10^{5} \times s \checkmark$ Rearrangement and evaluation $\begin{aligned} & s=4.6 \times 10^{7} \div 2.3 \times 10^{5}=200(\mathrm{~m}) \\ & d=200-130=70(\mathrm{~m}) \end{aligned}$	4	$\begin{gathered} 1.2 \\ 2.1 \times 3 \end{gathered}$	ALLOW any subject of the equation ALLOW an independent mark for recognition that the distance d is their value of s minus 130 , as long as $\mathrm{s}>130$ and d correctly calculated
		(ii)	(Energy transferred) from kinetic (energy store of train) to thermal energy (store) of brakes/train/surroundings \checkmark	2	1.1×2	ALLOW of air/tunnel walls IGNORE sound
	(b)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $\mathbf{3 6 0} \mathbf{0 0 0}(\mathbf{N})$ award 5 marks Calculation $\mathrm{KE}=\left(1 / 2 \times 280000 \times 12^{2}\right)=2.016 \times 10^{7}(\mathrm{~J}) \checkmark$ $K E=$ work done by force Recall and rearrange work done $=$ force \times distance force $=2.016 \times 10^{7} \div 56$ force $=360000(\mathrm{~N}) \checkmark$	5	$\begin{aligned} & 2.1 \\ & 1.1 \\ & 1.2 \\ & 2.1 \\ & 2.1 \end{aligned}$	ALLOW answers with more sf that round correctly to this value. ALLOW answers in standard form or using prefixes ALLOW if $\mathrm{KE}=2.016 \times 10^{7}(\mathrm{~J})$ seen anywhere in response ALLOW $1 / 2 \times 280000 \times 12^{2}$ for 2.016×10^{7} ECF wrong value of $K E$
	(c)		The KE of the trains is transferred by heating (and the	2	1.1	

Question		Answer	Marks	AO element	Guidance
thermal store of the surroundings is increased). \checkmark AND any one from: idea that: There are now more trains \checkmark More people/passengers (transfer energy by heating surroundings) \checkmark Not all of energy from motors/engines is transferred to KE of train as they are not 100\% efficient. \checkmark $\mathbf{2 . 1}$	ALLOW (tunnels) used more frequently/often				

Question		Answer	Marks	AO element	Guidance
$\mathbf{8}$	(a)	It changes speed as it enters and leaves the prism \checkmark OR It slows down as it enters (the glass/prism)/ It speeds up as it leaves (the glass/prism) \checkmark it changes direction/bends. \checkmark	$\mathbf{2}$	$\mathbf{1 . 1 \times 2}$	
(b)	Red light has the lowest frequency \checkmark Violet light is refracted most moving from air to glass \checkmark	$\mathbf{2}$	$\mathbf{1 . 1}$		

Question		Answer	Marks	AO element	Guidance
	(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $108(\mathrm{~m})$ or $110(\mathrm{~m})$ award 3 marks Identifies stopping distance $=$ area under negative slope line Recall area of triangle $=1 / 2$ base \times height \checkmark Stopping distance $=108(\mathrm{~m}) \checkmark$	3	$\begin{gathered} 1.2 \\ 2.2 \times 2 \end{gathered}$	ALLOW counting squares method ALLOW for counting squares, answers that round to 110 (m) IGNORE distance $=$ speed x time ALLOW $1 / 2 \times 12 \times 18$ ECF height and/or base from 9 ci ALLOW 110 (m) to 2sf
(d)	(i)	$\begin{aligned} & \text { Straight lines drawn on graph: } \\ & (0,0) \text { to }(1-24,26) \checkmark \\ & (1-24,26) \text { to }(21-44,20) \checkmark \\ & (21-44,20) \text { to }(45,0) \checkmark \end{aligned}$	3	2.2×3	With a ruler and $\pm 1 / 2$ small square Must start from $(0,0)$ ECF first point $(x, y), 2^{\text {nd }}$ point $(x+20, y-6)$ ECF $2^{\text {nd }}$ point to $(45,0)$
	(ii)	(second gazelle because) The area (under the curve) is larger	1	3.2a	

Question		Answer	Marks	AO element	Guidance
$\mathbf{1 0}$		FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=1.4($ A) award 2 marks Substitution into force $=$ magnetic flux density \times current \times length of conductor $0.63=1.8 \times 1 \times 0.25 \checkmark$ Current $=1.4(\mathrm{~A}) \checkmark$	$\mathbf{2}$	$\mathbf{2 . 1 \times 2}$	ALLOW calculation of 1.4 A and a final answer slightly more (to allow for lifting the rod)

Question			Answer	Marks	AO	Guidance
11	(a)		particles gain kinetic energy/move faster (when heated/ as temperature rises) particles move further apart (when heated/change state) particles escape from liquid (as they enter gaseous state)	3	1.1×3	ALLOW atoms, molecules for 'particles' throughout DO NOT ALLOW vibrate faster/more for 'move faster'
	(b)		Idea that (for a fixed mass) latent heat is greater than specific heat. energy from water is transferred to the solid PCM by heating OR energy from liquid PCM is transferred to water/night air by heating energy from water melts the solid PCM by heating OR the liquid PCM freezes by heating the night air/water	3	$\begin{gathered} 2.1 \\ 3.1 \mathrm{ax} 2 \end{gathered}$	
	(c)	(i)	(A because) Any two from: Melting point of \mathbf{A} (temperature of $16^{\circ} \mathrm{C}$) is lower than required $/ 22^{\circ} \mathrm{C}$ so it will have a greater cooling effect \checkmark Melting point of \mathbf{B} (temperature of $28^{\circ} \mathrm{C}$) is higher than required so it will not melt below that temperature \checkmark The time to melt \mathbf{A} is greater so more energy/heating is required to melt it or A has higher specific latent heat \checkmark The gradient of the slopes for \mathbf{A} is lower so more energy/heating is required to increase its temperature or it has higher specific heat capacity) ORA \checkmark	2	3.2ax2	DO NOT ALLOW just A without justification
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE	5		

Question	Answer	Marks	$\begin{array}{\|c} \hline \text { AO } \\ \text { element } \end{array}$	Guidance
	$\begin{aligned} & \text { If answer }=150 \mathbf{0 0 0}(\mathrm{~J} / \mathrm{kg}) \text { award } 5 \text { marks } \\ & \text { Deduce time required from graph }=[160-35] \text { OR } 125(\mathrm{~s}) \checkmark \\ & \text { Recall and rearrange to energy }=\text { power } x \text { time } \checkmark \\ & E=120 \times 125 \text { OR } 15000(\mathrm{~J}) \checkmark \end{aligned}$ Select and apply energy = mass x specific latent heat $E=100 \times 10^{-3} \times \text { SLH }$ $\text { SLH }=15000 \div\left[100 \times 10^{-3}\right]=150000(\mathrm{~J} / \mathrm{kg})$		$\begin{gathered} 2.2 \\ 1.2 \\ 2.1 \times 3 \end{gathered}$	ALLOW ECF from their calculated value of E using energy $=$ power x time 150 (J / kg) scores 4 marks

OCR (Oxford Cambridge and RSA Examinations)
 The Triangle Building
 Shaftesbury Road
 Cambridge
 CB2 8EA
 OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

